On Simultaneous Chebyshev Approximations

David A. Sprecher
Department of Mathematics, University of California, Santa Barbara, California 93106

Communicated by T. J. Rivlin
Received August 1, 1969; Revised September 19, 1969

1. Statement of the Problem

Consider the space \mathscr{C} of continuous real-valued functions with domain [0,1$]$. For a given function $f \in \mathscr{C}$ let $E_{j}(f)$ represent its degree of Chebyshev approximation by algebraic polynomials of degree $\leqslant j$. With each polynomial p_{j} with $\operatorname{deg} p_{j}=j$, we associate the class

$$
\mathscr{E}\left(p_{j}\right)=\left\{f \in \mathscr{C} \mid E_{j}(f)=\left\|f-p_{j}\right\|\right\} .
$$

T. J. Rivlin [1] has raised the problem of characterizing the n-tuples of polynomials $\left\{p_{0}, p_{1}, \ldots, p_{n-1}\right\}$ with $\operatorname{deg} p_{j}=j$ for $j=0,1, \ldots, n-1$, such that

$$
\mathscr{E}\left(p_{0}, p_{1}, \ldots, p_{n-1}\right)=\bigcap_{j=0}^{n-1} \mathscr{E}\left(p_{j}\right) \neq \varnothing
$$

He has shown that for this to be true, it is necessary for every difference $p_{m}-p_{k}, 0 \leqslant k<m \leqslant n-1$ to change sign not less than $k+1$ times in the interval $[0,1]$. Necessary and sufficient conditions for the case $n=3$ are as follows:

Theorem 1. Let

$$
\begin{aligned}
& p_{0}(x)=a_{0} \\
& p_{1}(x)=b_{0}+b_{1} x \quad\left(b_{1} \neq 0\right) \\
& p_{2}(x)=c_{0}+c_{1} x+c_{2} x^{2} \quad\left(c_{2} \neq 0\right)
\end{aligned}
$$

be given polynomials. Then $\mathscr{E}\left(p_{0}, p_{1}, p_{2}\right) \neq \varnothing$ if and only if the following conditions are met:
(A) There are points $0<x_{1}<x_{2}<1$ such that

$$
p_{1}\left(x_{j}\right)=p_{2}\left(x_{j}\right) \quad \text { for } \quad j=1,2
$$

(B) If $x_{2} \leqslant x_{1}+\left|b_{1}\right| c_{2} \mid$, then

$$
\begin{array}{ll}
p_{1}\left(\frac{x_{1}}{2}\right)<a_{0}<\frac{1}{2}\left[p_{2}\left(x_{1}\right)+\max _{x_{2} \leqslant x \leqslant 1} p_{2}(x)\right], & \left(b_{1}>0, c_{2}<0\right), \\
p_{1}\left(\frac{x_{2}+1}{2}\right)<a_{0}<\frac{1}{2}\left[p_{2}\left(x_{2}\right)+\max _{0 \leqslant x \leqslant x_{1}} p_{2}(x)\right], & \left(b_{1}<0, c_{2}<0\right), \\
\frac{1}{2}\left[p_{2}\left(x_{1}\right)+\min _{x_{2} \leqslant x \leqslant 1} p_{2}(x)\right]<a_{0}<p_{1}\left(\frac{x_{1}}{2}\right), & \left(b_{1}<0, c_{2}>0\right), \\
\frac{1}{2}\left[p_{2}\left(x_{2}\right)+\min _{0 \leqslant x \leqslant x_{1}} p_{2}(x)\right]<a_{0}<p_{1}\left(\frac{x_{2}+1}{2}\right), & \left(b_{1}>0, c_{2}>0\right) .
\end{array}
$$

If $x_{2}>x_{1}+\left|b_{1} / c_{2}\right|$, let $\xi_{2} \leqslant \xi_{1}$ be the solutions of the equation
$p_{2}(x)=p_{1}(x)+\min \left[p_{1}(0)-p_{2}(0), p_{2}\left(-\frac{c_{1}}{2 c_{2}}\right)-p_{1}\left(-\frac{c_{1}}{2 c_{2}}\right), p_{1}(1)-p_{2}(1)\right]$
when $c_{2}<0$,
$p_{2}(x)=p_{1}(x)+\max \left[p_{1}(0)-p_{2}(0), p_{2}\left(-\frac{c_{1}}{2 c_{2}}\right)-p_{1}\left(-\frac{c_{\mathbf{1}}}{2 c_{2}}\right), p_{1}(1)-p_{2}(1)\right]$ when $c_{2}>0$.
Then,

$$
\begin{array}{ll}
\quad p_{1}\left(\frac{x_{1}}{2}\right)<a_{0}<\frac{1}{2}\left[p_{2}\left(x_{1}\right)+p_{2}\left(\xi_{1}\right)\right], & \left(b_{1}>0, c_{2}<0\right), \\
p_{1}\left(\frac{x_{2}+1}{2}\right)<a_{0}<\frac{1}{2}\left[p_{2}\left(x_{2}\right)+p_{2}\left(\xi_{2}\right)\right], & \left(b_{1}<0, c_{2}<0\right), \\
\frac{1}{2}\left[p_{2}\left(x_{1}\right)+p_{2}\left(\xi_{1}\right)\right]<a_{0}<p_{1}\left(\frac{x_{1}}{2}\right), & \left(b_{1}<0, c_{2}>0\right), \\
\frac{1}{2}\left[p_{2}\left(x_{1}\right)+p_{2}\left(\xi_{2}\right)\right]<a_{0}<p_{1}\left(\frac{x_{2}+1}{2}\right), & \left(b_{1}>0, c_{2}>0\right) .
\end{array}
$$

We mention in passing that the condition $x_{2} \leqslant x_{1}+\left|b_{1} / c_{2}\right|$ is equivalent to $x_{2} \leqslant-\left(c_{1} / 2 c_{2}\right)$ when $b_{1} c_{2}<0$, and to $x_{1} \geqslant-\left(c_{1} / 2 c_{2}\right)$ when $b_{1} c_{2}>0$; the condition $x_{2}>x_{1}+\left|b_{1} / c_{2}\right|$ is similarly related to $-\left(c_{1} / 2 c_{2}\right)$. This is seen by observing that $\xi=\left(x_{1}+x_{2}\right) / 2=\left(b_{1}-c_{1}\right) / 2 c_{2}, \xi$ being the point at which $\left|p_{1}(x)-p_{2}(x)\right|$ assumes its maximum for $x_{1} \leqslant x \leqslant x_{2}$. With the notation

$$
\begin{aligned}
p_{j}^{*} & =-\operatorname{sgn} c_{2} \cdot p_{j}, & & \\
A_{1} & =\left[x_{2}, 1\right], & A_{2} & =\left[0, x_{1}\right], \\
a_{2} & =\frac{x_{2}+1}{2}, & a_{1} & =\frac{x_{1}}{2}, \\
p_{2}^{*}\left(\xi_{j 1}\right) & =\max _{x \in A_{j}} p_{2}^{*}(x), & \xi_{j 2} & =\xi_{j},
\end{aligned}
$$

condition (B) can be condensed to the form

$$
p_{1}{ }^{*}\left(a_{j}\right)<p_{0}{ }^{*}(x)<\frac{1}{2}\left[p_{1}{ }^{*}\left(x_{j}\right)+p_{2}{ }^{*}\left(\xi_{j k}\right)\right],
$$

where

$$
j=\left\{\begin{array}{ll}
1 & \text { when } b_{1} c_{2}<0, \\
2 & \text { when } \quad b_{1} c_{2}>0,
\end{array} \quad k=\left\{\begin{array}{lll}
1 & \text { when } & x_{2} \leqslant x_{1}+\left|\frac{b_{1}}{c_{2}}\right|, \\
2 & \text { when } & x_{2}>x_{1}+\left|\frac{b_{1}}{c_{2}}\right| .
\end{array}\right.\right.
$$

It suffices to carry out the proof for the case $b_{1}>0$ and $c_{2}<0$, because the other cases reduce to this one by reflections. Specifically, we let

$$
\begin{array}{lllll}
x=1-v & \text { and } y=w & \text { when } & b_{1}<0 & \text { and } \\
c_{2}<0, \\
x=v & \text { and } y=-w & \text { when } & b_{1}<0 & \text { and } \\
c_{2}>0, \\
x=1-v & \text { and } y=-w & \text { when } & b_{1}>0 & \text { and } \\
c_{2}>0
\end{array}
$$

We shall further restrict the proof to the case $x_{2} \leqslant x_{1}+\left|b_{1} / c_{2}\right|$, because the proof in the case $x_{2}>x_{1}+\left|b_{1} / c_{2}\right|$ runs parallel to the former and involves no new ideas. We shall actually prove

Theorem 2. Let $p_{0}(x)=a_{0}, p_{1}(x)=b_{0}+b_{1} x\left(b_{1}>0\right)$, and $p_{2}(x)=$ $c_{0}+c_{1} x+c_{2} x^{2}\left(c_{2}<0\right)$ be given polynomials, the last two intersecting at a point $x_{2} \leqslant-\left(c_{1} / 2 c_{2}\right), 0 \leqslant x_{2} \leqslant 1$. Then the following statements are equivalent:
(C) $\mathscr{E}\left(p_{0}, p_{1}, p_{2}\right) \neq \varnothing$.
(D) The polynomials $p_{1}(x)$ and $p_{2}(x)$ intersect also at a point x_{1}, where $0<x_{1}<x_{2}<1, x_{2} \leqslant x_{1}+\left|b_{1} / c_{2}\right|$, and

$$
p_{1}\left(\frac{x_{1}}{2}\right)<a_{0}<\frac{1}{2}\left[p_{2}\left(x_{1}\right)+\max _{x_{2} \leqslant x \leqslant 1} p_{2}(x)\right] .
$$

(E) There are constants

$$
\alpha_{0}>\alpha_{1}>\alpha_{2} \geqslant 0
$$

and points

$$
0 \leqslant t_{1}<t_{2} \leqslant t_{3}<t_{4} \leqslant 1
$$

such that if

$$
p_{j}^{-}(x)=p_{j}(x)-\alpha_{j}
$$

and

$$
p_{j}^{+}(x)=p_{j}(x)+\alpha_{j},
$$

then

(E-1) $\quad p_{1}-\left(t_{j}\right)=p_{2}{ }^{-}\left(t_{j}\right)$, for $j=1,4$,
(E-2) $p_{1}{ }^{+}\left(t_{j}\right)=p_{2}{ }^{+}\left(t_{j}\right)$, for $j=2,3$,
(E-3) $\quad p_{2}{ }^{-}(0) \leqslant p_{0}-(x) \leqslant p_{1}^{-}\left(t_{1}\right)$,
(E-4) $p_{1}{ }^{+}\left(t_{2}\right) \leqslant p_{0}{ }^{+}(x) \leqslant \max _{t_{3} \leqslant x \leqslant 1} p_{2}^{+}(x)$,
(E-5) $\left\|q^{-}-p_{j}\right\| \leqslant \alpha_{j}$ and $\left\|q^{+}-p_{j}\right\| \leqslant \alpha_{j}$, for $j=1,2$, where

$$
q^{-}(x)=\max \left\{p_{0}^{-}(x), p_{1}^{-}(x), p_{2}^{-}(x)\right\}
$$

$$
q^{+}(x)=\min \left\{p_{0}^{+}(x), p_{1}^{+}(x), p_{2}^{+}(x)\right\}
$$

The reasoning of the proof yields a corresponding result when polynomials are replaced by an arbitrary Chebyshev system. It seems to be unsuitable for attacking Rivlin's problem for $n>2$ because of the large number of cases arising. We prove, however,

Theorem 3. Iff $\in \mathscr{E}\left(p_{0}, p_{1}, \ldots, p_{n-1}\right)$, then

$$
E_{0}(f)>E_{1}(f)>\cdots>E_{n-1}(f) .
$$

2. Heuristic Considerations

Certain a priori facts hold when we suppose that $f \in \mathscr{E}\left(p_{0}, p_{1}, p_{2}\right)$. Namely, there exist constants $\alpha_{0}>\alpha_{1}>\alpha_{2} \geqslant 0$ satisfying:
(F) The function $f(x)$ meets each of the polynomials $p_{j}^{-}(x)$ and $p_{j}{ }^{+}(x)$.
(G) $\quad q^{-}(x) \leqslant f(x) \leqslant q^{+}(x)$.
(H) The polynomials $p_{i}^{-}(x)$ intersect pairwise, as do the polynomials $p_{j}{ }^{\dagger}(x)$. Properties (F) and (G) are evident.

To verify (H) we note that if, say, $p_{0}^{-}(x)<p_{1}^{-}(x)$, then $p_{0}-(x)<$ $q^{-}(x) \leqslant f(x)$, thereby contradicting (F).

We observe that $\mathscr{E}\left(p_{0}, p_{1}, p_{2}\right)$ cannot contain linear functions. If u is a second-degree polynomial in $\mathscr{E}\left(p_{0}, p_{1}, p_{2}\right)$, then $u \in \mathscr{E}\left(p_{2}\right)$, and this implies that $u=p_{2}$ and hence $\alpha_{2}=0$. Conversely, if $\alpha_{2}=0$ then p_{2} is the only member of $\mathscr{E}\left(p_{0}, p_{1}, p_{2}\right)$. Thus, we will henceforth assume that $\alpha_{2}>0$.

Consider Fig. 1 below. Notice, in particular, the triangle $T_{1} T_{2} T_{4}$ and the relative position of the segment $R_{1} R_{2}$. Loosely speaking, our proof consists of showing that a similar situation is both necessary and sufficient for $\mathscr{E}\left(p_{0}, p_{1}, p_{2}\right)$ to be nonempty.

Fig. 1

3. Proof That (C) Implies (E)

Let us put

$$
\begin{aligned}
r^{-}(x) & =\max \left\{p_{1}^{-}(x), p_{2}^{-}(x)\right\}, \\
r^{+}(x) & =\min \left\{p_{1}^{+}(x), p_{2}^{+}(x)\right\} .
\end{aligned}
$$

We shall first show that the polynomials $p_{1}-(x)$ and $p_{2}-(x)$ must intersect at two distinct points of $[0,1]$. If, on the contrary, they intersect at a single point t_{1}, then

$$
r^{-}(x)= \begin{cases}p_{1}-(x) & \left(0 \leqslant x \leqslant t_{1}\right) \\ p_{2}-(x) & \left(t_{1} \leqslant x \leqslant 1\right)\end{cases}
$$

According to property (H), the polynomials $p_{1}{ }^{+}(x)$ and $p_{2}{ }^{+}(x)$ intersect in at least one point. Let $p_{1}{ }^{+}\left(t_{2}\right)=p_{2}{ }^{+}\left(t_{2}\right)$. If $t_{2} \leqslant t_{1}$, then

$$
r^{+}(x)= \begin{cases}p_{2}^{+}(x) & \left(0 \leqslant x \leqslant t_{2}\right) \\ p_{1}^{+}(x) & \left(t_{2} \leqslant x \leqslant 1\right)\end{cases}
$$

and we see that $f(x)-p_{2}(x)=E_{2}(f)$ only when $t_{1} \leqslant x \leqslant 1$, whereas $f(x)-p_{2}(x)=-E_{2}(f)$ only when $0 \leqslant x \leqslant t_{2}$. This means, of course, that there are only two points in $[0,1]$ at which the difference $f(x)-p_{2}(x)$ equals, with alternating signs, to $E_{2}(f)$. As a result, $f \notin \mathscr{E}\left(p_{2}\right)$. On the other hand, when $t_{2}>t_{1}$, when $r^{+}(x)<p_{1}{ }^{+}(x)$ for $0 \leqslant x \leqslant t_{2}$. This implies that $f(x)-p_{1}(x)=E_{1}(f)$ only when $0 \leqslant x \leqslant t_{1}$ whereas $f(x)-p_{1}(x)=-E_{1}(f)$ only when $t_{2} \leqslant x \leqslant 1$, and it follows that $f \notin \mathscr{E}\left(p_{1}\right)$. Thus, $f \notin \mathscr{E}\left(p_{1}, p_{2}\right)$, and therefore there are points t_{1} and t_{4} as asserted in ($\mathrm{E}-1$).

Now, from property (H) we know that there is some point t_{3} such that $p_{1}{ }^{+}\left(t_{3}\right)=p_{2}{ }^{+}\left(t_{3}\right)$. Suppose $0 \leqslant t_{3} \leqslant t_{1}$. Then a simple geometric argument shows that $q^{+}(x)=p_{1}{ }^{+}(x)<p_{2}{ }^{+}(x)$ for all points $t_{1}<x<t_{2}$, whereas $q^{-}(x)=p_{1}^{-}(x)>p_{2}^{-(x)}$ whenever $0 \leqslant x \leqslant t_{1}$ or $t_{2} \leqslant x \leqslant 1$. It follows that there are at most three consecutive points in the interval [0,1$]$ at which the difference $f(x)-p_{2}(x)$ equals, with alternating signs, to $E_{2}(f)$. Once more we conclude that $f \notin \mathscr{E}\left(p_{2}\right)$, and so (E-2) is seen to hold.

The left inequality in (E-3) holds; for if $p_{0}^{-(x)}<p_{2}{ }^{-}(0)$, then $p_{0}{ }^{-}(x)$ does not intersect $q^{-}(x)$, thereby contradicting (H). To show that the right inequality holds, suppose $p_{1}{ }^{-}\left(t_{1}\right)<p_{0}-(x)$. Then $q^{-}(x)>p_{1}^{-}(x)$ for $0 \leqslant x<t_{4}$. Since $q^{+}(x)<p_{1}^{+}(x)$ for $t_{3}<x \leqslant 1$, it follows that there are only two points at which $f(x)-p_{1}(x)=E_{1}(f)$ with alternating signs, implying that $f \notin \mathscr{E}\left(p_{1}\right)$. This establishes (E-3).

To establish (E-4) we note that if $p_{0}{ }^{+}(x)<p_{1}{ }^{+}\left(t_{2}\right)$, then $p_{1}{ }^{+}(x)$ does not intersect $q^{+}(x)$, and if $\max _{t_{3} \leqslant x \leqslant 1} p_{2}{ }^{+}(x)<p_{0}^{+}(x)$, then $p_{0}{ }^{+}(x)$ does not intersect $q^{+}(x)$. In either case, (H) is not satisfied and hence (E-4) is true.

Finally, the necessity of condition ($\mathrm{E}-5$) is clear, for if, say, $\left\|q^{-}-p_{1}\right\|>\alpha_{1}$, then $q^{-}(x) \leqslant f(x)$ implies that $\left\|f-p_{1}\right\|>\alpha_{1}=\left\|f-p_{1}\right\|$.

4. Proof That (E) Implies (D)

The existence of the stipulated points $0<x_{1}<x_{2}<1$ in which $p_{1}(x)$ and $p_{2}(x)$ intersect follows at once. In particular, we have the inequalities

$$
t_{1}<x_{1}<t_{2} \leqslant t_{3}<x_{2}<t_{4}
$$

Using the definitions of $p_{j}^{-}(x)$ and $p_{j}{ }^{+}(x)$, the inequalities in (E-3) and (E-4) can be written in the form

$$
b_{0}-\alpha_{1} \leqslant a_{0}-\alpha_{0} \leqslant b_{0}+b_{1} t_{1}-\alpha_{1}
$$

and

$$
b_{0}+b_{1} t_{2}+\alpha_{1} \leqslant a_{0}+\alpha_{1} \leqslant \max _{t_{3} \leqslant x \leqslant 1} p_{2}(x)+\alpha_{2} .
$$

These inequalities combine into

$$
\begin{equation*}
b_{0}+b_{1} \frac{t_{2}}{2} \leqslant a_{0} \leqslant \frac{1}{2}\left[\left(b_{0}+b_{1} t_{1}\right)+\max _{t_{3} \leqslant x \leqslant 1} p_{2}(x)-\left(\alpha_{1}-\alpha_{2}\right)\right] . \tag{1}
\end{equation*}
$$

We have

$$
\begin{array}{rlrl}
b_{0}+b_{1} \frac{t_{2}}{2} & =p_{1}\left(\frac{t_{2}}{2}\right)>p_{1}\left(\frac{x_{1}}{2}\right) & & \text { because } \\
b_{0}+x_{1}<t_{2}, \\
b_{1} & =p_{1}\left(t_{1}\right)<p_{1}\left(x_{1}\right) & & \text { because } \\
t_{1}<x,
\end{array}
$$

and

$$
\max _{t_{3} \leqslant x \leqslant 1} p_{2}(x)-\left(\alpha_{1}-\alpha_{2}\right)=\max _{x_{2} \leqslant x \leqslant 1} p_{2}(x)-\left(\alpha_{1}-\alpha_{2}\right)<\max _{x_{2} \leqslant x \leqslant 1} p_{2}(x)
$$

since $\alpha_{1}-\alpha_{2}>0$. The inequalities (1) thus imply

$$
p_{1}\left(\frac{x_{1}}{2}\right)<a_{0}<\frac{1}{2}\left[p_{1}\left(x_{1}\right)+\max _{x_{2} \leq x \leqslant 1} p_{2}(x)\right],
$$

as was to be demonstrated.

5. Proof That (D) Imples (E)

According to condition (D) there is a constant $\beta_{0}>0$ such that

$$
\begin{equation*}
b_{0}<a_{0}-\beta_{0}<p_{1}\left(x_{1}\right) \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
p_{1}\left(x_{1}\right)<a_{0}+\beta_{0}<\max _{x_{2} \leqslant x \leqslant 1} p_{2}(x) . \tag{3}
\end{equation*}
$$

Let u_{1} and u_{2} satisfy in $\left[x_{1}, x_{2}\right]$ the equations

$$
p_{2}\left(u_{1}\right)=a_{0}-\beta_{0}
$$

and

$$
p_{2}\left(u_{2}\right)=a_{0}+\beta_{0},
$$

and let
$0<\beta_{1}<\min \left\{b_{0}-c_{0}, p_{1}\left(u_{1}\right)-p_{2}\left(u_{1}\right), p_{2}\left(u_{2}\right)-p_{1}\left(u_{2}\right), \max _{x_{2} \leqslant x \leqslant 1} p_{2}(x)-p_{2}\left(u_{2}\right)\right\}$,
so that

$$
\beta_{1}<p_{2}(\xi)-p_{1}(\xi)
$$

where $\xi=\left(x_{1}+x_{2}\right) / 2$. Letting α_{2} stand for a positive constant to be specified subsequently, we put

$$
\alpha_{0}=\beta_{0}+\beta_{1}+\alpha_{2}
$$

and

$$
\alpha_{1}=\beta_{1}+\alpha_{2}
$$

With these constants we define the polynomials $p_{j}^{-}(x)=p_{j}(x)-\alpha_{j}$ and $p_{j}^{+}(x)=p_{j}(x)+\alpha_{j}$, and (H) is readily seen to be satisfied. Since $\alpha_{1}>\alpha_{2}$, there are points $0 \leqslant t_{1}<x_{1}<t_{2} \leqslant t_{3}<x_{2}<t_{4} \leqslant 1$ for which (E-1) and (E-2) hold.

Let us now show that (E-3) and (E-4) are valid.
By (4), $c_{0} \leqslant b_{0}-\beta_{1}$, and according to (2), $b_{0}<a_{0}-\beta_{0}$. Hence,

$$
\begin{aligned}
p_{2}-(0) & =c_{0}-\alpha_{2} \leqslant b_{0}-\left(\beta_{1}+\alpha_{2}\right)<a_{0}-\left(\beta_{0}+\beta_{1}+\alpha_{2}\right) \\
& =a_{0}-\alpha_{0}=p_{0}-(x) .
\end{aligned}
$$

Again by (4), $p_{2}\left(u_{1}\right)<p_{2}\left(t_{1}\right)$, so that

$$
\begin{aligned}
p_{0}^{-}(x) & =a_{0}-\beta_{0}-\beta_{1}-\alpha_{2}=p_{2}\left(u_{1}\right)-\alpha_{2}-\beta_{1} \\
& =p_{2}^{-}\left(u_{1}\right)-\beta_{1}<p_{2}-\left(u_{1}\right)<p_{2}-\left(t_{1}\right)=p_{1}^{-}\left(t_{1}\right)
\end{aligned}
$$

and hence (E-3) is established.
To verify (E-4), we observe that $t_{2}<u_{2}$ by our choice of β_{1}, and, since $b_{1}>0$, this implies that
$p_{1}{ }^{+}\left(t_{2}\right)<p_{1}{ }^{+}\left(u_{2}\right)<p_{2}{ }^{+}\left(u_{2}\right)=a_{0}+\beta_{0}+\alpha_{2}<a_{0}+\beta_{0}+\beta_{1}+\alpha_{2}=p_{0}{ }^{+}(x)$.
Finally,

$$
p_{0}^{+}(x)=p_{2}^{+}\left(u_{2}\right)+\beta_{1}<\max _{x_{2} \leqslant x \leqslant 1} p_{2}(x)=\max _{t_{3} \leqslant x \leqslant 1} p_{2}(x)
$$

since the maximum of $p_{2}(x)$ is assumed to be attained at x_{2} or to its right.
According to what has just been proved, we have the situation described in Fig. 1. We now determine α_{2} to satisfy (E-5), which completes the proof.

> 6. Proof That (E) Implies (C)

Fix four points u_{j} such that $t_{1}<u_{1}<u_{2}<u_{3}<u_{4}<t_{2}$, and let g be the piecewise linear function on $\left[t_{1}, t_{2}\right]$ with vertices

$$
\begin{array}{lll}
\left(t_{1}, q^{-}\left(t_{1}\right)\right), & \left(u_{1}, q^{+}\left(u_{1}\right)\right), & \left(u_{2}, q^{-}\left(u_{2}\right)\right), \\
\left(u_{3}, q^{+}\left(u_{3}\right)\right), & \left(u_{4}, q^{-}\left(u_{4}\right)\right), & \left(t_{4}, q^{+}\left(t_{4}\right)\right)
\end{array}
$$

(in this connection see [2]). Put

$$
f(x)= \begin{cases}q^{-}(x), & 0 \leqslant x \leqslant t_{1} \\ g(x), & t_{1} \leqslant x \leqslant t_{2} \\ q^{+}(x), & t_{2} \leqslant x \leqslant t_{3} \\ \frac{t_{4}-x}{t_{4}-t_{3}} q^{+}\left(t_{3}\right)+\frac{x-t_{3}}{t_{4}-t_{3}} q^{-}\left(t_{4}\right), & t_{3} \leqslant x \leqslant t_{4} \\ q^{-}(x), & t_{4} \leqslant x \leqslant 1\end{cases}
$$

Then f is continuous and we assert that $f \in \mathscr{E}\left(p_{0}, p_{1}, p_{2}\right)$.
We first observe that, indeed,

$$
\begin{equation*}
q(x) \leqslant f(x) \leqslant q^{+}(x) \tag{5}
\end{equation*}
$$

Owing to (E-3), $q^{-}(0)=p_{0}{ }^{-}(0)$, and owing to (E-4) there is a point u, $t_{2} \leqslant u \leqslant t_{3}$, such that $q^{+}(u)=p_{0}{ }^{+}(u)$. These facts, together with (E-5) and (5), show that $f \in \mathscr{E}\left(p_{0}\right)$.

Next, we recall that $q^{-}\left(t_{1}\right)=p_{1}^{-}\left(t_{1}\right), q^{+}\left(t_{2}\right)=p_{1}{ }^{+}\left(t_{2}\right)$, and $q^{-}\left(t_{4}\right)=p_{1}^{-}\left(t_{4}\right)$. Since $t_{1}<t_{2}<t_{4}$, it follows again from (E-5) and (5) that $f \in \mathscr{E}\left(p_{1}\right)$.

Finally, we note that $q^{-}(x)=p_{2}^{-}(x)$ and $q^{+}(x)=p_{2}{ }^{+}(x)$ for $t_{1} \leqslant x \leqslant t_{2}$. The difference $g(x)-p_{2}(x)$ changes sign five times, and therefore $f \in \mathscr{E}\left(p_{2}\right)$.

This completes the proof of Theorem 2. Theorem 1 follows from the remarks preceding Theorem 2.

7. Proof of Theorem 3

We first note that for $0 \leqslant j \leqslant n-1$,

$$
E_{j}(f)=\inf _{\operatorname{dec} p=1}\|f-p\|=\inf _{\operatorname{ces} p \leqslant 1}\|f-p\| .
$$

As a consequence, we have that if $f \in \mathscr{E}\left(p_{k}, p_{m}\right)$ and $0 \leqslant k<m$ then $E_{k}(f) \geqslant E_{m}(f)$. But if $E_{k}(f)=E_{m}(f)$, then by the uniqueness of best approximations $p_{k}=p_{m}$, so that $\operatorname{deg} p_{m}=k<m$. This, however, contradicts the definition of $\mathscr{E}\left(p_{k}, p_{m}\right)$; hence $E_{k}(f)>E_{m}(f)$, and the theorem follows.

Acknowledgment

The author is indebted to Z. Ziegler and D. Amir for pointing out an error in the original formulation of Theorem 1. The above version of the proof of Theorem 3 is due to T. J. Rivlin.

References

1. T. J. Rivlin, Proc. Coll. Abstr. Spaces Approx. (Oberwolfach, July 1968), Birkhänsen Verlag, Ed. P. L. Butzer - B. Sz. Nagy, 1970.
2. D. A. Sprecher, Simultaneous best approximations with two polynomials, J. Approximation Theory 2 (1969), 384-388.
